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Failure of linear control in noisy coupled map lattices
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We study a one-dimensional ring of diffusively coupled logistic maps in the vicinity of an unstable, spatially
homogeneous fixed point. The failure of linear controllers due to additive noise is discussed with the aim of
clarifying the failure mechanism. A criterion is suggested for estimating the noise level that can be tolerated by
the given controller. The criterion implies the loss of control for surprisingly low noise levels in certain cases
of interest, and accurately accounts for the results of numerical experiments over a broad range of parameter
values. Previous results of Grigorievet al. @Phys. Rev. Lett.79, 2795~1997!# are reviewed and compared with
our numerical and analytic results.@S1063-651X~98!01305-1#

PACS number~s!: 05.45.1b, 47.20.Ky, 47.52.1j
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I. INTRODUCTION

Over the past several years, work on the feedback st
lization of periodic orbits in nonlinear dynamical system
has heightened interest within the physics community in
characteristics of various types of feedback-controlled s
tems. A problem of particular importance to physicists is
stabilization of uniform or ordered states in spatially e
tended systems, and it is of interest to analyze generic m
els of such systems and elucidate the features that make
trol difficult. Two recent articles have examined what
arguably the simplest representation of a spatially exten
system with an unstable, homogeneous fixed point — a one-
dimensional~1D! ring of diffusively coupled logistic maps
@1,2#. This paper extends those analyses with the aim
clarifying the mechanism responsible for the failure of line
control in the presence of additive noise. Though more
orous mathematical techniques of the theory of robust c
trol can be applied to this problem to address specific e
neering objectives@3#, the following analysis provides a
useful conceptual picture of the behavior that can be
pected to be quantitatively accurate for generic physical s
tems.

Following Grigorievet al. @2#, we consider the feedbac
control of a ring of diffusively coupled maps with additiv
white noise:

zi
~ t11!5 f „zi

~ t !1e~zi 21
~ t ! 22zi

~ t !1zi 11
~ t ! !…1h i

~ t ! , ~1!

where subscripts indicate spatial position and superscrip
parentheses indicate temporal iterates.~Throughout this pa-
per superscriptswithoutparentheses will indicate exponents!
For a given ring size, we show how a typical controller d
signed using standard linear-quadratic control theory m
fail in the presence of very low noise levels, and we sugg
a criterion for estimating the maximum tolerable noise lev
For a fixed noise level, the maximum ring size that can
controlled can be taken as an estimate of the maximum
lowable spacing between controllers in a much larger rin
571063-651X/98/57~5!/5271~5!/$15.00
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The noiseh i
(t) is taken to be an independent number b

tween2A3s andA3s, so we have

^h i
~ t !&50 ; i ,t, ~2!

^h i
~ t !h j

~s!&5s2d i j d ts , ~3!

where^ & represents an ensemble average. We take the
to containL sites and the spatial index to run from 1 toL, so
z0 is identified withzL , andzL11 with z1. For concreteness
we will take f to be the logistic map

f ~z!5mz~12z!, ~4!

wherem is a real parameter. Generalization of the results
other maps is straightforward.

For any positivem, Eq. ~1! has a homogeneous fixe
point solutionzi5121/m[z* . For m.3, the homogeneous
solution continues to exist but is unstable to long wavelen
fluctuations. To study the stability of this solution, we linea
ize the system in the vicinity of the fixed point. Lettingxi

(t)

5zi
(t)2z* , we obtain

x~ t11!5A•x~ t !, ~5!

with

A5aS 122e e 0 ••• 0 e

e 122e e � � 0

0 � � � � A

A � � � � 0

0 � � e 122e e

e 0 ••• 0 e 122e

D ,

~6!

wherea522m is the Floquet multiplier off at the fixed
point.

Grigoriev et al. have applied well-known methods t
show that control can be achieved in this noiseless sys
5271 © 1998 The American Physical Society
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for arbitrarily large L with just two controllers placed a
adjacent sites@2#. Taking the two sites to bei 51 andi 5L,
the controlled system in the linear regime is written as

x~ t11!5~A2BK !–x~ t !, ~7!

whereB is a 23L matrix with B115B2L51 and all other
elements 0, andK is a L32 matrix determined by an itera
tive solution of an appropriate Riccati equation derived us
standard techniques of linear-quadratic control theory@4,5#.
We emphasize that the control scheme requires that e
site of the system be observed; the feedback signals at si
andL are formed from a linear combination of all thexi ’s on
the most recent time step. The problem of determining
optimal configuration for local controllers that only recei
local information is beyond the scope of this work.

Grigoriev et al. have also pointed out that arbitrarily low
noise levels destroy the control for sufficiently large syst
sizes. In general, for any given noise levels, the full non-
linear system will not be stabilized by the feedback of E
~7! for sufficiently largeL, or for fixed L and sufficiently
larges. As will be discussed below, the breakdown of co
trol is caused solely by the fact that the linear-quadratic c
trol theory based on Eq.~5! does not take account of th
nonlinear terms in Eq.~1!. Naively, one might expect that th
nonlinear deviations would be of orders2 and hence neve
play an important role for smalls, but it turns out that the
feedback matrixBK necessarily becomes increasingly sing
lar with increasingL, leading to great amplification of th
noise by the controller itself. The nonlinear deviations due
this amplified noise can be large compared to the orig
noise level. When this occurs, the nonlinear deviations th
selves are amplified further by the controller and the sys
quickly ‘‘blows up.’’

In the following, we first describe a method for calcula
ing the amplification of the noise by the controller. We th
present our explicit criterion for estimating the tolerab
noise level and show that it compares well with the nume
cal data. Finally, we compare our estimate to a different
suggested by Grigorievet al., pointing out the relative ad
vantages and disadvantages of each.

II. NOISE AMPLIFICATION

The amplification of noise by the controller is a pure
linear effect due to the non-normality of the eigenvectors
g
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the matrixA2BK . In a non-normal system that is linearl
stable aboutx50 small perturbations in some directions m
lead to transient growth inuuxuu before the eventual exponen
tial decay. If the degree of non-normality is high and t
relevant eigenvalues are not too close to being degene
one can obtain large transient amplifications of an initial p
turbation. Trefethen has emphasized the destabilizing in
ence of nonlinearities on highly non-normal systems@6,7#.

Non-normality is intrinsic to the problem of controlling
spatially extended system using sparsely distributed ac
tors. It is intuitively obvious that a perturbation occurring f
from any actuator will undergo transient growth before t
feedback generated by the controller can propagate to
position where the control is needed. This transient growth
the controlled system can be accounted for only by the
currence of non-normal eigenvectors in the problem. As t
physical picture suggests, the non-normal effects become
creasingly important with increasingL and a fixed number of
controllers.

As discussed by Trefethen and others, a non-normal
trix can be characterized by itse pseudospectra, which ca
be used to place bounds on the size of the transient growt
initial deviations from the fixed point. We are not awar
however, of any analytic techniques for determining the
pseudospectra and so turn instead to a straightforward ca
lation of the noise amplification, taking advantage of the
sumed delta-function correlations in the noise.

For the system defined by Eq.~7!, we define an amplifi-
cation constantg by the equation

lim
T→`

K 1

L
ux~T!u2L 1/2

5gs. ~8!

Given an explicit form for the matrixA2BK , g can be
computed as follows.

Let M[A2BK , let e( i ) be a normalized eigenvector o
M , where 1, i ,L, let v( i ) be the vector orthogonal to all o
thee( j ) with j Þ i , normalized such thatv( i )•e( j )5d i j , and let
l ( i ) be the eigenvalue associated withe( i ) . Using h(t)

5( ie( i )(v( i )•h(t)) and noting that the eigenvalues and eige
vectors ofM may be complex, the left-hand side of Eq.~8!
can be evaluated directly:
K 1

L
ux~T!u2L 5

1

L K U(
t50

T

M th~T2t !U2L ~9!

5
1

L(
t50

T

(
s50

T

(
i 51

L

(
j 51

L

~l~ i !!
t~l~ j !* !s~e~ i !•e~ j !* !^~v~ i !•h~T2t !!~v~ j !* •h~T2s!!&. ~10!

Using Eqs.~2! and ~3! to evaluate the ensemble average and performing the resulting geometric sum, we find

lim
T→`

K 1

L
ux~T!u2L 5

s2

L (
i 51

L

(
j 51

L
1

12l~ i !l~ j !*
~e~ i !•e~ j !* !~v~ i !•v~ j !* !. ~11!
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Comparing to Eq.~8! we find

g5S 1

L (
i 51

L

(
j 51

L
1

12l~ i !l~ j !*
~e~ i !•e~ j !* !~v~ i !•v~ j !* !D 1/2

.

~12!

The added noise of strengths produces fluctuations o
magnitudegs in the controlled linear system. Analytical e
timation of g can be quite difficult, but exact numerica
evaluation ofg is straightforward, given an explicit form fo
M .

Table I shows values ofg computed for variousL, m,
ande, with K determined as described below. The table a
shows the maximum magnitude eigenvaluel (1) for each
case, making it clear thatg may be large even when all th
l ( i )’s are substantially less than unity. The largeness og
derives from the non-normality of thee( i )’s, which results in
large magnitudes of some of thev( i )’s. Again, the amplifica-
tion of the noise is a purely linear effect directly attributab
to the transient growth of initial perturbations in non-norm
systems.

It is important to note~though it may be obvious to some!
that control never fails in the purely linear system with no
added. There can be no threshold above which the n
causes divergence, since in the purely linear system the
no scale that can determine such a threshold. Though
noise may be amplified substantially, it is always limited.

III. ESTIMATES OF TOLERABLE NOISE LEVELS

Given our exact computation ofg, we can now estimate
the value ofs above which control will be lost in the ful
nonlinear system. Noting that the control perturbations
designed for optimal stabilization of the linearized syste
we are led to consider the effect of the deviations from
linear behavior due to nonlinear terms in the full equatio
We make the ansatz that correlations in these nonlinear
viations may be neglected, and hence treat the nonlinea
viations as an additional source of noise in the linear syst
We refer to the original noise of strengths as the ‘‘additive
noise’’ and the deviations induced by nonlinearities as
‘‘deviational noise’’ with strengthsd .

The size of the fluctuations about the fixed point will
given approximately by

TABLE I. The amplification factorg and the maximum magni
tude eigenvaluel (1) for a representative set of parametersm, e, and
L.

m e L g ul (1)u

3.5 0.30 10 1122.0 0.807
3.5 0.50 10 412.0 0.796
3.5 0.70 10 21 427.0 0.826
3.3 0.30 20 328 814.0 0.915
3.3 0.50 20 31 615.0 0.906
3.3 0.70 20 6.793108 0.886
3.1 0.30 20 3362.0 0.953
3.1 0.50 20 1174.0 0.945
3.1 0.70 20 5.983107 0.946
o
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D5gAs21sd
2. ~13!

But sd itself is produced by the nonlinear terms generated
the fluctuations. For the logistic map,sd is therefore of the
order ofmD2, so we have

D5gAs21m2D4. ~14!

This equation has a real solution forD if and only if

s,
1

2mg2
. ~15!

For s larger than this bound, the deviational noise will e
ceed the additive noise, thereby generating even larger
viational noise and an exponential divergence in the size
the fluctuations. Thus we take Eq.~15! as our criterion for
obtaining effective control.

We note three reasons that this estimate could fail in p
ciple. First, the estimate assumes that the dominant non
earity encountered by the fluctuating system is quadr
~which is true in the system studied in this paper!. If higher-
order nonlinearities become important before our criterion
saturated, control may be lost for smallers. Second, the
estimate assumes that there are no correlations in the d
tional noise, which is not strictly correct. Finally, it is pos
sible that control would be lost for smallers if the fluctua-
tions are not distributed roughly evenly over the compone
of x. If a single component dominates the sum in Eq.~12!,
for example, it would be inappropriate to divide byL in
determining the relevant size of the fluctuations.

For these reasons, it is necessary to investigate the a
racy of our estimate using numerical simulation of the f
nonlinear system with additive noise. We have perform
simulations on systems of sizeL510 andL520 for several
different values of the parametersm and e. For each set of
parameters values, the feedback control matrixK was deter-
mined using standard methods of linear-quadratic con
theory @4,5#. With weight matrices defined asQ5IL3L and
R5I232, K is obtained from the relation:

K5~R1B†PB!21B†PA, ~16!

whereP is determined from the Riccati equation:

P5~Q1A†PA!2A†PB~R1B†PB!21B†PA, ~17!

Eq. ~17! is solved using a simple iterative procedure untilP
converges according to the condition

(
i , j

uPi , j
~T11!2Pi , j

~T!u

(
i , j

uPi , j
~T11!u

,1026. ~18!

More stringent convergence conditions did not produce
ticeable changes inK .

Each run is started from the homogeneous initial con
tion zi5z* for all sitesi , and the full system with control is
iterated 20 000 times. All computations~including the calcu-
lation of K ) are performed at a precision of 30 decimal di
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its. If control was lost during a run, the feedback mechan
quickly caused the values ofzi to stray from the allowed
range for the logistic map and resulted in the rapid div
gence ofuzi u. Figures 1–3 showsmax, the maximal value of
the noise strength that is effectively controlled, as a funct
of the couplinge for 3 values ofm. Our predictions ofsmax
match the measured values well for eachm, indicating that
the criterion proposed in Eq.~15! captures the importan
physics of noise-induced loss of control.

IV. COMPARISON TO METHOD OF GRIGORIEV et al.

Grigorievet al.have studied this problem from a differe
perspective. They have developed an estimate for the n
level at which control fails based on an analysis of the c
trollability of the linear system supplemented by the assum
tion that the feedback signal applied cannot exceed a num
of order unity@2#.

FIG. 1. The measured value, the prediction of Eq.~15!, and the
prediction of Grigorievet al. for the maximal noise strengthsmax

for which control can be achieved form53.1 andL520.

FIG. 2. The measured value, the prediction of Eq.~15!, and the
prediction of Grigorievet al. for the maximal noise strengthsmax

for which control can be achieved form53.3 andL520.
-

n

ise
-
-
er

Briefly put, Grigorievet al.’s estimate relies on the well
known result that controllability of anoiselesslinear system
implies the possibility of directing the system from any a
bitrary point in phase space to the desired fixed point wit
a number of steps equal to the number of degrees of free
L @4,5#. This strict criterion is then adapted to the noisy ca
by assuming that the relevant points in phase space for w
it must be possible to direct the system to the fixed poin
L steps are just those that can be generated by iterating
uncontrolled noisy system throughL steps. If no constraints
are placed on the size of the control perturbations, the
that the system is known to be controllable implies that t
can always be done for the purely linear system, regard
of the strength of the noise. If the strength of the cont
perturbations are limited, however, return to the fixed po
in L steps will not be possible for sufficiently large nois
strength.

In order to estimate the size of the control perturbatio
needed for the particular geometry of the system at ha
Grigoriev et al. make the plausible assumption that eve
perturbation that can affect the central site by the end of
L iterations should be of the order of magnitude required
produce an effect of sizelmax

L s after propagating to the cen
tral site, wherelmax is the largest eigenvalue ofA. The last
perturbation that can propagate to the central site by the
of the L steps occurs at stepL/2 and is suppressed~or am-
plified! by a factor (ae)L/2 before reaching the central site
Letting the size of the perturbation beu, we then have a
necessary condition for effective control: we must permiu
to be large enough such that

u~ae!L/25lmax
L s. ~19!

The estimate of the maximals that can be controlled is the
given by the criterion that bothu andu(ae)L/2 remain less
than unity. This argument leads directly to the criteria pu
lished in Ref.@2#. Note that for the system of coupled logist
maps, it is not clear from this analysis whether the restrict
that control perturbations must not exceed order unity ar
due to the fact that the individual maps diverge rapidly fox

FIG. 3. The measured value, the prediction of Eq.~15!, and the
prediction of Grigorievet al. for the maximal noise strengthsmax

for which control can be achieved form53.5 andL510.
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57 5275FAILURE OF LINEAR CONTROL IN NOISY COUPLED . . .
outside the unit interval or due to the fact that nonline
effects become important. The analysis presented in Sec
above clearly indicates that it is the latter effect that is m
important.

The method based on controllability has one great adv
tage over ours in that it makes no reference to the matrixK ;
it is intended to apply to the optimal choice ofK , which may
be different from the one determined above. One cannot
out, for example, the possibility that a different choice ofK
would permit control of significantly higher noise levels.

The price of the generality of the method is inaccuracy
certain classes of systems. As shown in Figs. 1–3, for
ample, the prediction of Grigorievet al. substantially under-
estimates the noise level that can be tolerated for small
ues of the coupling. Fore.0.5, however, the prediction o
Grigoriev et al. tends to overestimate the maximum contr
lable noise strength.

The estimate of Grigorievet al. handles the linear aspec
of the problem quite elegantly but uses a rather crude e
mate of when the nonlinear effects become important. I
possible for the deviational noise due to the nonlinearity
become important for much lower additive noise streng
than those required to force control perturbations of or
unity. By directly computing the amplification of the nois
by a specific proposed controller, we arrive at a more ac
rate estimate of the point at which nonlinear effects will b
come important and thereby invalidate the linear analy
Note that the loss of control has nothing to do with the
ability of the controller to supply sufficiently large perturb
ev
r
III
t

n-

le

x-

l-

ti-
is
o
s
r

u-
-
s.
-

tions, as might be suggested by the use of a cutoff of un
for the feedback signals in the analysis of Grigorievet al.
Nor is it correct to estimate the importance of the nonline
effects simply by comparing the magnitudes of linear a
nonlinear terms on a single iteration. Rather, the loss of c
trol is due to the effect described in Sec. III above, a
occurs for feedback levels much lower than unity.

We view our results as complementary to those of Gr
oriev et al., both for practical and conceptual reasons. Tak
together, they form a coherent picture of the breakdown
control in a spatially extended homogeneous system.
important conceptual points can be summarized as follo
~1! sparsely distributed controllers in such systems give
to highly non-normal eigenvectors in the vicinity of a hom
geneous fixed point;~2! this induces a large amplification o
both the noise and the nonlinear deviations from the line
ized systems; and~3! an accurate estimate of the tolerab
noise level for a given implementation of feedback cont
can be obtained by considering the nonlinear effects as
additional source of noise and applying the criterion of E
~15!.
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