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Failure of linear control in noisy coupled map lattices
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We study a one-dimensional ring of diffusively coupled logistic maps in the vicinity of an unstable, spatially
homogeneous fixed point. The failure of linear controllers due to additive noise is discussed with the aim of
clarifying the failure mechanism. A criterion is suggested for estimating the noise level that can be tolerated by
the given controller. The criterion implies the loss of control for surprisingly low noise levels in certain cases
of interest, and accurately accounts for the results of numerical experiments over a broad range of parameter
values. Previous results of Grigoriet al.[Phys. Rev. Lett79, 2795(1997] are reviewed and compared with
our numerical and analytic resul{s§1063-651X98)01305-1

PACS numbes): 05.45+b, 47.20.Ky, 47.52t]

I. INTRODUCTION The noiser" is taken to be an independent number be-

tween— /3¢ and /30, so we have
Over the past several years, work on the feedback stabi-

lization of periodic orbits in nonlinear dynamical systems (g'"Y=0 Vi, 2
has heightened interest within the physics community in the
characteristics of various types of feedback-controlled sys- <77i(t) 77}5>>=025”5ts, ©)]

tems. A problem of particular importance to physicists is the

stabilization of uniform or ordered states in spatially ex-where( ) represents an ensemble average. We take the ring
tended systems, and it is of interest to analyze generic mode containL sites and the spatial index to run from 1ltpso

els of such systems and elucidate the features that make cozny is identified withz_ , andz . ; with z;. For concreteness,
trol difficult. Two recent articles have examined what is we will take f to be the logistic map

arguably the simplest representation of a spatially extended

system with an unstable, homogeneous fixed (peira one- f(z2)=nz(1-2), (4)
dimensional(1D) ring of diffusively coupled logistic maps , L

[1,2]. This paper extends those analyses with the aim oyvhereu is a real parameter. Generalization of the results to
clarifying the mechanism responsible for the failure of linear®ther maps is straightforward. _
control in the presence of additive noise. Though more rig- O @ny positivex, Eq. (1) has a homogeneous fixed

orous mathematical techniques of the theory of robust conPCint solutionzj=1—1/u=z*. For u>3, the homogeneous
trol can be applied to this problem to address specific engisolutlon continues to exist but is unstable to long wavelength

neering objectived3], the following analysis provides a fluctuations. To study the stability of this solution, we linear-
useful conceptual picture of the behavior that can be exize ﬁhe system in the vicinity of the fixed point. Letting
pected to be quantitatively accurate for generic physical sys= Zi( )—z*, we obtain
tems.

Following Grigorievet al. [2], we consider the feedback X U=A.x, ®)
control of a ring of diffusively coupled maps with additive .
white noise: with

2V =f@V+ €2V, 220+ 20 N+ 9V, (D) e 1-2¢ € . - 0

where subscripts indicate spatial position and superscripts inA= @ . . . . . 0 '
parentheses indicate temporal iterat@$roughout this pa- ) ' ' ’ ’

per superscriptwithoutparentheses will indicate exponeits. 0 € 1-2e €

For a given ring size, we show how a typical controller de- € 0 .0 € 1—2¢

signed using standard linear-quadratic control theory may

fail in the presence of very low noise levels, and we suggest )

a criterion for estimating the maximum tolerable noise levelwhere a=2— u is the Floquet multiplier off at the fixed

For a fixed noise level, the maximum ring size that can bepoint.

controlled can be taken as an estimate of the maximum al- Grigoriev et al. have applied well-known methods to
lowable spacing between controllers in a much larger ring. show that control can be achieved in this noiseless system
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for arbitrarily largeL with just two controllers placed at the matrixA—BK. In a non-normal system that is linearly
adjacent site§2]. Taking the two sites to be=1 andi=L,  stable abouk=0 small perturbations in some directions may
the controlled system in the linear regime is written as  |ead to transient growth ifjx|| before the eventual exponen-
XD = (A~ BK) -x(V @) tial decay. If the degree of non-normality is high and the
' relevant eigenvalues are not too close to being degenerate,
whereB is a 2xL matrix with B;;=B,, =1 and all other One can obtain large transient amplifications of an initial per-
elements 0, and is aL x 2 matrix determined by an itera- turbation. Trefethen has emphasized the destabilizing influ-
tive solution of an appropriate Riccati equation derived usinggnce of nonlinearities on highly non-normal systei®3].
standard technigues of linear-quadratic control theér$|. Non-normality is intrinsic to the problem of controlling a
We emphasize that the control scheme requires that evespatially extended system using sparsely distributed actua-
site of the system be observed; the feedback signals at siteddrs. It is intuitively obvious that a perturbation occurring far
andL are formed from a linear combination of all tkRgs on ~ from any actuator will undergo transient growth before the
the most recent time step. The problem of determining théeedback generated by the controller can propagate to the
optimal configuration for local controllers that only receive position where the control is needed. This transient growth in
local information is beyond the scope of this work. the controlled system can be accounted for only by the oc-
Grigoriev et al. have also pointed out that arbitrarily low currence of non-normal eigenvectors in the problem. As this
noise levels destroy the control for sufficiently large systemphysical picture suggests, the non-normal effects become in-
sizes. In general, for any given noise level the full non-  creasingly important with increasirigand a fixed number of
linear system will not be stabilized by the feedback of Eg.controllers.
(7) for sufficiently largeL, or for fixed L and sufficiently As discussed by Trefethen and others, a non-normal ma-
large o. As will be discussed below, the breakdown of con-trix can be characterized by its pseudospectra, which can
trol is caused solely by the fact that the linear-quadratic conbe used to place bounds on the size of the transient growth of
trol theory based on Eq5) does not take account of the initial deviations from the fixed point. We are not aware,
nonlinear terms in Eq1). Naively, one might expect that the however, of any analytic techniques for determining these
nonlinear deviations would be of orde* and hence never pseudospectra and so turn instead to a straightforward calcu-
play an important role for smab, but it turns out that the lation of the noise amplification, taking advantage of the as-
feedback matriBK necessarily becomes increasingly singu-sumed delta-function correlations in the noise.
lar with increasingL, leading to great amplification of the ~ For the system defined by E(), we define an amplifi-
noise by the controller itself. The nonlinear deviations due tacation constant by the equation
this amplified noise can be large compared to the original
noise level. When this occurs, the nonlinear deviations them-
selves are amplified further by the controller and the system i 1 T2 1’2_
quickly “blows up.” T'L”l XV =vyo
In the following, we first describe a method for calculat-
ing the amplification of the noise by the controller. We then
present our explicit criterion for estimating the tolerable
noise level and show that it compares well with the numeri-
cal data. Finally, we compare our estimate to a different on&
suggested by Grigorieet al, pointing out the relative ad-
vantages and disadvantages of each.

®

Given an explicit form for the matribA—BK, y can be
omputed as follows.

Let M=A—BK, let g;) be a normalized eigenvector of
M, where I<i<L, letv;, be the vector orthogonal to all of
thee(,) with j #i, normallzed such thatj)- ;)= 6j;, and let
Ay be the eigenvalue associated wity,. Using 7"

=& (V- #Y) and noting that the eigenvalues and eigen-

The amplification of noise by the controller is a purely vectors ofM may be complex, the left-hand side of E§)
linear effect due to the non-normality of the eigenvectors ofcan be evaluated directly:

1 1
o) |

. i) O (&) - €5) (Ve TGy ). (10

II. NOISE AMPLIFICATION

Il
l—b|4|—\_‘
M-
M -
HM -

Using Eqgs.(2) and(3) to evaluate the ensemble average and performing the resulting geometric sum, we find

2 L L
g
Iim< —|x(M] >=—2 (&) €5) (Veiy V(i) (11)
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TABLE I. The amplification factolr’y and the maximum magni- A=y [o2+ 05_ (13)
tude eigenvalua ; for a representative set of parametarse, and
L. But o4 itself is produced by the nonlinear terms generated by

L the fluctuations. For the logistic mapy is therefore of the
K € Y Al order of uA?, so we have
3.5 0.30 10 1122.0 0.807
— 2 2A4

35 0.50 10 412.0 0.796 A=yJor+puAn (14)
35 0.70 10 21427.0 0.826 This equation has a real solution farif and only if
3.3 0.30 20 328814.0 0.915
3.3 0.50 20 31615.0 0.906 1
3.3 0.70 20 6.79< 1¢° 0.886 o< 5 (15
3.1 0.30 20 3362.0 0.953 2y
3.1 0.50 20 1174.0 0.945 . L . .
31 0.70 20 5.98¢ 107 0.946 For o larger than this bound, the deviational noise will ex-

ceed the additive noise, thereby generating even larger de-
viational noise and an exponential divergence in the size of
the fluctuations. Thus we take E€L5) as our criterion for
obtaining effective control.

Comparing to Eq(8) we find

1 L 1 112 We note three reasons that this estimate could fail in prin-
= T e € ) (Vi VE mp[e. First, the estimate assumes t_hat the dom!nant nonlm-
YTIL ;1 121 1—A(i>AZ‘j)(e(') ) (Vi Vi) earity encountered by the fluctuating system is quadratic

(120 (which is true in the system studied in this papéirhigher-
order nonlinearities become important before our criterion is
The added noise of strength produces fluctuations of saturated, control may be lost for smaller Second, the
magnitudeyo in the controlled linear system. Analytical es- estimate assumes that there are no correlations in the devia-
timation of y can be quite difficult, but exact numerical tional noise, which is not strictly correct. Finally, it is pos-
evaluation ofy is straightforward, given an explicit form for sible that control would be lost for smaller if the fluctua-
M. tions are not distributed roughly evenly over the components
Table | shows values of computed for various, pu, of x. If a single component dominates the sum in Ep),
ande, with K determined as described below. The table alsdor example, it would be inappropriate to divide ty in
shows the maximum magnitude eigenvalug, for each determining the relevant size of the fluctuations.
case, making it clear that may be large even when all the  For these reasons, it is necessary to investigate the accu-
\()’s are substantially less than unity. The largenessyof racy of our estimatg using _numeripal simulation of the full
derives from the non-normality of the;,’s, which results in ~ nonlinear system with additive noise. We have performed
large magnitudes of some of thg,'s. Again, the amplifica- ~ Simulations on systems of size=10 andL =20 for several
tion of the noise is a purely linear effect directly attributable different values of the parametegsand e. For each set of
to the transient growth of initial perturbations in non-normal parameters values, the feedback control mariwas deter-
systems. mined using standard methods of linear-quadratic control
It is important to noteéthough it may be obvious to some theory[4,5]. With weight matrices defined &3=1, ., and
that control never fails in the purely linear system with noiseR=1,x, K is obtained from the relation:
added. There can be no threshold above which the noise oo 1nt
causes divergence, since in the purely linear system there is K=(R+B'PB) "B'PA, (16)
no scale that can determine such a threshold. Though the . . . . .
noise may be amplified substantially, it is always limited. WhereP is determined from the Riccati equation:

P=(Q+A'PA)—ATPB(R+B'PB) 'B'PA, (17)
ll. ESTIMATES OF TOLERABLE NOISE LEVELS
Eq. (17) is solved using a simple iterative procedure uPtil

Given our exact computation Qf, we can now estimate converges according to the condition

the value ofo above which control will be lost in the full
nonlinear system. Noting that the control perturbations are

designed for optimal stabilization of the linearized system, 2 |P§}+1)—P§P|
we are led to consider the effect of the deviations from the t 10°6. (18)
linear behavior due to nonlinear terms in the full equations. R

— i,j

i

We make the ansatz that correlations in these nonlinear de-

viations may be neglected, and hence treat the nonlinear de-

viations as an additional source of noise in the linear systenmMore stringent convergence conditions did not produce no-

We refer to the original noise of strengthas the “additive  ticeable changes iK.

noise” and the deviations induced by nonlinearities as the Each run is started from the homogeneous initial condi-

“deviational noise” with strengthor . tion z;=2z* for all sitesi, and the full system with control is
The size of the fluctuations about the fixed point will be iterated 20 000 times. All computatiofisicluding the calcu-

given approximately by lation of K) are performed at a precision of 30 decimal dig-
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FIG. 3. The measured value, the prediction of Edy), and the
prediction of Grigorievet al. for the maximal noise strengitt
for which control can be achieved fgr=3.5 andL =10.

FIG. 1. The measured value, the prediction of Bdp), and the
prediction of Grigorievet al. for the maximal noise strengtti,x
for which control can be achieved fgr=3.1 andL = 20.

its. If control was lost during a run, the feedback mechanism Briefly put, Grigorievet al.s estimate relies on the well-
quickly caused the values & to stray from the allowed known result that controllability of aciselesdinear system
range for the logistic map and resulted in the rapid diverimplies the possibility of directing the system from any ar-
gence oflz|. Figures 1-3 showr .., the maximal value of bitrary point in phase space to the desired fixed point within
the noise strength that is effectively controlled, as a functior humber of steps equal to the number of degrees of freedom
of the couplinge for 3 values ofu. Our predictions ofr,,, L [4.5]. This strict criterion is then adapted to the noisy case
match the measured values well for egchindicating that Py assuming that the relevant points in phase space for which
the criterion proposed in Eq(15) captures the important it must be possible to direct the system to the fixed point in
physics of noise-induced loss of control. L steps are just those that can be generated by iterating the
uncontrolled noisy system throughsteps. If no constraints
are placed on the size of the control perturbations, the fact
that the system is known to be controllable implies that this
Grigorievet al. have studied this problem from a different can always be done for the purely linear system, regardless
perspective. They have developed an estimate for the noidy the str_ength of _th_e noise. If the strength of the contr_ol
level at which control fails based on an analysis of the Conperturbaﬂong are limited, hqwever, return to the fixed point
trollability of the linear system supplemented by the assump'—n L steps will not be possible for sufficiently large noise

tion that the feedback signal applied cannot exceed a numbéFrength' . . .
of order unity[2]. In order to estimate the size of the control perturbations

needed for the particular geometry of the system at hand,
Grigoriev et al. make the plausible assumption that every

IV. COMPARISON TO METHOD OF GRIGORIEV et al.

. . n=33 . . perturbation that can affect the central site by the end of the
10* + i L iterations should be of the order of magnitude required to
produce an effect of sizkﬁnap after propagating to the cen-
tral site, where\ 5 is the largest eigenvalue @f. The last
o perturbation that can propagate to the central site by the end
2 100 | i of the L steps occurs at stdp/2 and is suppresse@r am-
2 plified) by a factor @e)-? before reaching the central site.
E Letting the size of the perturbation he we then have a
E necessary condition for effective control: we must pemnit
g w02 L 2 &—o0 Measurement ] to be large enough such that
/ o---o Es_tlma'te Lz s L
A;" 2-—-A Grigoriev, et al U(e€) "= N0 (19
i The estimate of the maximal that can be controlled is then
107 o 0"’ o3 2 05 03 10 given by the criterion that both andu(ae)“? remain less
Coupling & t_han unity. This argument leads directly to the crltena_qu-
lished in Ref[2]. Note that for the system of coupled logistic

maps, it is not clear from this analysis whether the restriction

FIG. 2. The measured value, the prediction of Edp), and the
prediction of Grigorievet al. for the maximal noise strengit, .,
for which control can be achieved fgr=3.3 andL = 20.

that control perturbations must not exceed order unity arises
due to the fact that the individual maps diverge rapidlyxor
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outside the unit interval or due to the fact that nonlineartions, as might be suggested by the use of a cutoff of unity
effects become important. The analysis presented in Sec. Ifbr the feedback signals in the analysis of Grigorival.
above clearly indicates that it is the latter effect that is mosWNor is it correct to estimate the importance of the nonlinear
important. effects simply by comparing the magnitudes of linear and
The method based on controllability has one great advamgonlinear terms on a single iteration. Rather, the loss of con-
tage over ours in that it makes no reference to the matrix trol is due to the effect described in Sec. Il above, and
it is intended to apply to the optimal choice§f whichmay  gccurs for feedback levels much lower than unity.
be different from the one determined above. One cannot rule \we view our results as complementary to those of Grig-
out, for example, the possibility that a different choicelof  griey et al, both for practical and conceptual reasons. Taken
would permit control of significantly higher noise levels.  together, they form a coherent picture of the breakdown of
The price of the generality of the method is inaccuracy incontrol in a spatially extended homogeneous system. The
certain classes of systems. As shown in Figs. 1-3, for eXmportant conceptual points can be summarized as follows:
ample, the prediction of Grigoriest al. substantially under- (1) sparsely distributed controllers in such systems give rise
estimates the noise level that can be tolerated for small valy highly non-normal eigenvectors in the vicinity of a homo-
ues of the coupling. Foe>0.5, however, the prediction of geneous fixed point2) this induces a large amplification of
Grigoriev et al. tends to overestimate the maximum control- hoth the noise and the nonlinear deviations from the linear-
lable noise strength. ized systems; an@3) an accurate estimate of the tolerable
The estimate of Grigorieet al. handles the linear aspects nojse level for a given implementation of feedback control
of the problem quite elegantly but uses a rather crude estigan pe obtained by considering the nonlinear effects as an

mate of when the nonlinear effects become important. It isydditional source of noise and applying the criterion of Eq.
possible for the deviational noise due to the nonlinearity tq1s),

become important for much lower additive noise strengths
than those required to force control perturbations of order
unity. By directly computing the amplification of the noise
by a specific proposed controller, we arrive at a more accu-
rate estimate of the point at which nonlinear effects will be- We thank R. Grigoriev and J. Doyle for useful conversa-
come important and thereby invalidate the linear analysistions. This work was supported by the National Science
Note that the loss of control has nothing to do with the in-Foundation under Grant Nos. DMR-9705410, DMR-
ability of the controller to supply sufficiently large perturba- 9419506, and DMR-9412416.
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